Part Number Hot Search : 
14010 MRF641 3T450 CONDUCTO C74VH S812H 1N707A 582KE
Product Description
Full Text Search
 

To Download OP183GBC Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  op183/op283 rev. c general description the op183 is a single-supply, 5 mhz bandwidth amplifier with slew rates of 10 v/ s. the op283 is a dual version. both can operate from voltages as low as 3 v and up to 36 v. this combi- nation of slew rate and bandwidth yields excellent single- supply ac performance, making these amplifiers ideally suited for telecom and multimedia audio applications. in addition to their ac characteristics, the op183 family provides good dc performance with guaranteed 1 mv offset. noise is a respectable 10 nv/ hz . supply current is only 1.2 ma per amplifier. these amplifiers are well suited for single-supply applications that require moderate bandwidths even when used in high gain configurations. this makes them useful in filters and instru- mentation. their output drive capability and very wide full power bandwidth make them a good choice for multimedia headphone drivers or microphone input amplifiers. the op183 and op283 are available in so-8 surface mount packages. they are specified over the extended industrial (C40 c to +85 c) temperature range. a 5 mhz single-supply operational amplifiers pin connections 8-lead narrow-body so (s suffix) top view (not to scale) 8 7 6 5 1 2 3 4 op183 8-lead narrow-body so (s suffix) top view (not to scale) 8 7 6 5 1 2 3 4 op283 features single-supply C 3 v to 36 v wide bandwidth C 5 mhz low offset voltage C 1 mv high slew rate: 10 v/ s low noise: 10 nv/ hz unity-gain stable input and output range includes gnd no phase reversal applications multimedia telecom adc buffers wide band filters microphone preamplifiers information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. no license is granted by implication or otherwise under any patent or patent rights of analog devices. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781/329-4700 www.analog.com fax: 781/326-8703 ? analog devices, inc., 2002
rev. c electrical characteristics (@ v s = 5.0 v, t a = 25 c unless otherwise noted) op183/op283?pecifications parameter symbol conditions min typ max unit input characteristics offset voltage v os v cm = 2.5 v, v out = 2.5 v, 0.025 1.0 mv C40 c t a +85 c 1.25 mv input bias current i b v cm = 2.5 v, v out = 2.5 v, 350 600 na C40 c t a +85 c 430 750 na input offset current i os v cm = 2.5 v, v out = 2.5 v, na C40 c t a +85 c11 50 na input voltage range 0 3.5 v common-mode rejection ratio cmrr v cm = 0 to 3.5 v C40 c t a +85 c 70 104 db large signal voltage gain a vo r l = 2 k ? , 0.2 v o 3.8 v 100 v/mv offset voltage drift ? v os / ? t4 v/ c bias current drift ? i b / ? t C1.6 na/ c output characteristics output voltage high v oh r l = 2 k ? to gnd 4.0 4.22 v output voltage low v ol r l = 2 k ? to gnd 50 75 mv short circuit limit i sc source 25 ma sink 30 ma power supply power supply rejection ratio psrr v s = 4 v to 6 v, C40 c t a +85 c 70 104 db supply current/amplifier i sy v o = 2.5 v, C40 c t a +85 c 1.2 1.5 ma supply voltage range v s 3 18 v dynamic performance slew rate sr r l = 2 k ? 510 v/ s full-power bandwidth bwp 1% distortion >50 khz settling time t s to 0.01% 1.5 s gain bandwidth product gbp 5 mhz phase margin m 46 degrees noise performance voltage noise e n p-p 0.1 hz to 10 hz 2 v p-p voltage noise density e n f = 1 khz, v cm = 2.5 v 10 nv/ hz current noise density i n 0.4 pa/ hz C2C (@ v s = 3.0 v, t a = 25 c unless otherwise noted) electrical characteristics parameter symbol conditions min typ max unit input characteristics offset voltage v os v cm = 1.5 v, v out = 1.5 v, 0.3 1.0 mv C40 c t a +85 c 1.25 mv input bias current i b v cm = 1.5 v, v out = 1.5 v, 350 600 na C40 c t a +85 c 750 na input offset current i os v cm = 1.5 v, v out = 1.5 v, na C40 c t a +85 c11 50 na input voltage range 0 1.5 v common-mode rejection ratio cmrr v cm = 0 v to 1.5 v, C40 c t a +85 c 70 103 db large signal voltage gain a vo r l = 2 k ? , 0.2 v o 1.8 v 100 260 v/mv output characteristics output voltage high v oh r l = 2 k ? to gnd 2.0 2.25 v output voltage low v ol r l = 2 k ? to gnd 90 125 mv short circuit limit i sc source 25 ma sink 30 ma power supply power supply rejection ratio psrr v s = 2.5 v to 3.5 v, C40 c t a +85 c 60 113 db supply current/amplifier i sy C40 c t a +85 c, v o = 1.5 v 1.2 1.5 ma dynamic performance gain bandwidth product gbp 5 mhz noise performance voltage noise density e n f = 1 khz, v cm = 1.5 v 10 nv/ hz
rev. c electrical characteristics parameter symbol conditions min typ max unit input characteristics offset voltage v os 0.01 1.0 mv C40 c t a +85 c 1.25 mv input bias current i b 300 600 na C40 c t a +85 c 400 750 na input offset current i os C40 t a +85 c11 50 na input voltage range C15 +13.5 v common-mode rejection ratio cmrr v cm = C15 v to +13.5 v, C40 c t a +85 c7086db large signal voltage gain a vo r l = 2 k ? 100 1000 v/mv offset voltage drift ? v os / ? t3 v/ c bias current drift ? i b / ? t C1.6 na/ c long term offset voltage v os note 1 1.5 mv output characteristics output voltage high v oh r l = 2 k ? to gnd, C40 c t a +85 c 13.9 14.1 v output voltage low v ol r l = 2 k ? to gnd, C40 c t a +85 c C14.05 C13.9 v short-circuit limit i sc source 30 ma sink 50 ma open -loop output impedance z out f = 1 mhz, a v = +1 15 ? power supply power supply rejection ratio psrr v s = 2.5 v to 18 v, C40 c t a +85 c 70 112 db supply current/amplifier i sy v s = 18 v, v o = 0 v, C40 c t a +85 c 1.2 1.75 ma supply voltage range v s 3 18 v dynamic performance slew rate sr r l = 2 k ? 10 15 v/ s full-power bandwidth bw p 1% distortion 50 khz settling time t s to 0.01% 1.5 s gain bandwidth product gbp 5 mhz phase margin m 56 degrees noise performance voltage noise e n p-p 0.1 hz to 10 hz 2 v p-p voltage noise density e n f = 1 khz 10 nv/ hz current noise density i n 0.4 pa/ hz notes 1 long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125 c, with an ltpd of 1.3. specifications subject to change without notice. (@ v s = 15.0 v, t a = 25 c unless otherwise noted) op183/op283 C3C
rev. c ordering guide temperature package package model range description option op183gs C40 c to +85 c 8-lead soic so-8 op283gs * C40 c to +85 c 8-lead soic so-8 * not for new design; obsolete april 2002. op183/op283 C4C absolute maximum ratings 1 supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 v input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 v differential input voltage 2 . . . . . . . . . . . . . . . . . . . . . . . . 7v output short-circuit duration to gnd . . . . . . . . . indefinite storage temperature range s package . . . . . . . . . . . . . . . . . . . . . . . . . C65 c to +150 c operating temperature range op183/op283g . . . . . . . . . . . . . . . . . . . . . C40 c to +85 c junction temperature range s package . . . . . . . . . . . . . . . . . . . . . . . . . C65 c to +150 c lead temperature range (soldering 60 sec) . . . . . . . . . 300 c package type ja 3 jc units 8-lead soic (s) 158 43 c/w notes 1 absolute maximum ratings apply to packaged parts, unless otherw ise noted. 2 for supply voltages less than 7 v, the absolute maximum input voltage is equal to the supply voltage. maximum input current should not exceed 2 ma. 3  ja is specified for the worst case conditions, i.e.,  ja is specified for device soldered in circuit board for soic packages.
rev. c typical performance characteristics?p183/op283 input offset voltage ? v quantity 0 ?00 ?00 ?00 0 +200 +400 +600 v s = 5v 300x op amps 10 20 30 40 50 60 70 80 tpc 1. op183 input offset voltage| distribution @ 5 v input offset voltage v quantity 0 600 400 200 0 +200 +400 +600 v s = 5v 590x op amps 20 40 60 80 100 120 140 160 tpc 4. op283 input offset voltage distribution @ 15 v quantity amplifiers 0 0 40 c  t a +85 c 590x op amps plastic package tcv os v/ c 2 4 6 8 10 12 14 16 20 40 60 80 100 120 140 160 180 200 tpc 7. op283 input offset voltage drift (tcv os ) distribution @ 5 v input offset voltage v quantity 0 600 400 200 0 +200 +400 +600 v s = 5v 300x op amps 10 20 30 40 50 60 70 80 tpc 2. op183 input offset voltage distribution @ 15 v quantity amplifiers 0 0 40 c  t a +85 c 300x op amps plastic package 20 40 60 80 100 120 140 160 2 4 6 8 10 12 tcv os v/ c tpc 5. op183 input offset voltage drift (tcv os ) distribution @ 5 v quantity amplifiers 0 0 40 c  t a +85 c 590x op amps plastic package tcv os v/ c 2 4 6 8 10 12 14 16 20 40 60 80 100 120 140 160 180 200 tpc 8. op283 input offset voltage drift (tcv os ) distribution @ 15 v input offset voltage v quantity 0 600 400 200 0 +200 +400 +600 v s = 5v 590x op amps 20 40 60 80 100 120 140 160 tpc 3. op283 input offset voltage distribution @ 5 v quantity amplifiers 0 0 40 c  t a +85 c 300x op amps plastic package 20 40 60 80 100 120 140 160 2 4 6 8 10 12 tcv os v/ c tpc 6. op183 input offset voltage drift (tcv os ) distribution @ 15 v frequency hz maximum output swing volts p-p 3 0 1k 1 10k 100k 1m 10m 2 t a = 25 c r l = 2k v s = 3v tpc 9. op183/op283 maximum out- put swing vs. frequency @ 3 v C5C
rev. c load current amps output voltage to rail volts 1m 1 10 100 1m 10m 10m 100m 1 source sink tpc 12. output voltage vs. sink & source current supply current\amplifier ma 0 75 v s = 18v r l =  temperature c 50 25 0 25 50 75 100 125 v s = 3v r l =  0.25 0.50 0.75 1.00 1.25 1.50 v s = 5v r l =  tpc 15. supply current per amplifier vs. temperature short circuit current ma 0 75 +1 sc temperature c 50 25 0 25 50 75 100 125 10 20 30 40 50 60 1 sc tpc 18. short-circuit current vs. temperature @ 15 v frequency hz maximum output swing volts p-p 0 1k 10k 100k 1m 10m t a = +25 c r l = 2k v s = +5v 1 2 3 4 5 tpc 10. op183/op283 maximum output swing vs. frequency @ 5 v input bias current na 0 15 t a = 25 c v s = 15v 10 5 0 5 10 13.5 common-mode voltage volts 200 300 400 500 600 100 tpc 13. input bias current vs. com- mon-mode voltage supply current\amplifier ma 0 0 supply voltage volts 5 7.5 10 12.5 15 17.5 20 t a = 25 c 0.25 0.50 0.75 1.00 1.25 1.50 2.5 tpc 16. supply current per amplifier vs. supply voltage frequency hz maximum output swing volts p-p 0 1k 10k 100k 1m 10m t a = +25 c r l = 2k v s = +15v 5 10 15 20 25 30 tpc 11. op183/op283 maximum output swing vs. frequency @ 15 v input bias current na 0 75 v s = 15v & v s = 5v temperature c 50 25 0 25 50 75 100 125 100 200 300 400 500 v s = +3v tpc 14. input bias current vs. temperature short circuit current ma 0 75 +1 sc temperature c 50 25 0 25 50 75 100 125 10 20 30 40 50 60 1 sc tpc 17. short-circuit current vs. temperature @ 5 v C6C op183/op283
rev. c op183/op283 frequency hz 10 1k 10k 100k 1m 10m t a = 25 c v s = 3v r l = 10k gain db 0 10 20 30 40 50 60 70 80 90 45 0 45 90 135 phase degrees phase phase margin = 43 gain tpc 21. open-loop gain and phase vs. frequency @ 3 v open-loop gain v/mv 0 75 temperature c 50 25 0 25 50 75 100 125 100 200 300 400 500 600 700 800 900 1000 v s = 5v r l = 2k v s =  15v or v s = 3v r l = 2k tpc 24. open-loop gain vs. temperature voltage noise density na/ hz frequency hz 0 10 5 10 25 30 35 40 100 1k 10k t a = 25 c v s =  15v or v s = 3v, 15v tpc 27. voltage noise density vs. frequency frequency hz common-mode rejection db 0 100 20 40 60 80 100 120 140 1k 10k 100k 1m t a = 25 c v s = 15v tpc 19. common-mode rejection vs. frequency frequency hz 10 1k 10k 100k 1m 10m t a = 25 c v s = 5v r l = 10k gain db 0 10 20 30 40 50 60 70 80 90 45 0 45 90 135 phase degrees phase phase margin = 46 gain tpc 22. open-loop gain and phase vs. frequency @ 5 v frequency hz 20 1k 10k 100k 1m 10m t a = 25 c v s =  15v closed-loop gain db a v = +100 a v = +10 a v = +1 10 0 10 20 30 40 50 tpc 25. closed-loop gain vs. frequency frequency hz 0 100 20 40 60 80 100 120 140 1k 10k 100k 1m t a = 25 c v s = 15v common-mode rejection db psrr +psrr tpc 20. power supply rejection vs. frequency frequency hz 10 1k 10k 100k 1m 10m t a = 25 c v s =  15v r l = 10k 0 10 20 30 40 50 60 70 80 90 45 0 45 90 135 phase degrees phase phase margin = 56 gain gain db tpc 23. open-loop gain and phase vs. frequency @ 15 v slew rate v/ s 0 75 v s = 15v r l = 2k slew rate temperature c 5 10 15 20 25 50 25 0 25 50 75 100 125 v s = 15v r l = 2k slew rate tpc 26. slew rate vs. temperature C7C
rev. c op183/op283 small signal overshoot % 0 0 capacitance pf 10 20 30 40 50 60 70 80 100 200 300 t a = 25 c v s =  15v r l = 2k negative edge positive edge tpc 30. small signal overshoot vs. load capacitance tpc 33. 0.1 hz to 10 hz noise @ 2.5 v frequency hz 0 100 1k 10k 100k 1m 10 20 30 40 50 60 70 80 90 100 a v = +10 t a = 25 c v s =  15v impedance a v = +1 tpc 29. closed-loop output impedance vs. frequency tpc 32. small signal performance @ 15 v tpc 35. thd + noise vs. frequency for various loads current noise density pa/ hz frequency hz 0 10 1.0 100 1k 10k t a = 25 c v s =  15v or v s = 3v/5v 2.0 3.0 4.0 5.0 6.0 tpc 28. current noise density vs. frequency tpc 31. large signal performance @ 15 v tpc 34. 0.1 hz to 10 hz noise @ 15 v C8C
rev. c op183/op283 applications op183 offset adjust figure 1 shows how the offset voltage of the op183 can be adjusted by connecting a potentiometer between pins 1 and 5, and connecting the wiper to v ee . the recommended value for the potentiometer is 10 k ? . this will give an adjustment range of approximately 1 mv. if larger adjustment span is desired, a 50 k ? potentiometer will yield a range of 2.5 mv. v cc op183 v os v ee figure 1. op183 offset adjust phase reversal the op183 family is protected against phase reversal as long as both of the inputs are within the range of the positive supply and the negative supply minus 0.6 volts. if there is a possibility of either input going beyond these limits, however, the inputs should be protected with a series resistor to limit input current to 2 ma. direct access arrangement the op183/op283 can be used in a single supply direct access arrangement (daa) as shown in figure 2. this figure shows a portion of a typical daa capable of operating from a single 5 v supply; with minor modifications it should also work on 3 v supplies. amplifiers a2 and a3 are configured so that the trans- mit signal txa is inverted by a2 and not inverted by a3. this C9C arrangement drives the transformer differentially so that the drive to the transformer is effectively doubled over a single am- plifier arrangement. this application takes advantage of the op183/283s ability to drive capacitive loads and to save power in single-supply applications. op283 op283 op283 300pf 0.1 f rxa txa 0.0047 f 37.4k a1 20k a2 3.3k 22.1k a3 475 2.5v ref 20k 20k 750pf 20k 20k 0.1 f 0.33 f figure 2. direct access arrangement 5 v only stereo dac for multimedia the low noise and single supply capability of the op283 are ideally suited for stereo dac audio reproduction or sound synthesis applications such as multimedia systems. figure 3 shows an 18-bit stereo dac output setup that is powered from a single 5 v supply. the low noise preserves the 18-bit dynamic range of the ad1868. for dacs that operate on dual supplies, the op283 can also be powered from the same supplies. 1 4 15 12 11 9 ad1868 2 3 5 6 18-bit dac v ref v ref 18-bit dac 13 18-bit serial reg. 18-bit serial reg. v l ll dl ck dr lr dgnd vbr agnd vor v s vol vbl 14 1/2 op283 10 8 16 1/2 op283 8 7 5v supply left channel output right channel output 47k 220 f 100pf 7.68k 9.76k 330pf 47k 220 f 100pf 7.68k 7.68k 330pf 9.76k 7.68k figure 3. 5 volt only 18-bit stereo dac
rev. c op183/op283 C10C low voltage headphone amplifiers figure 4 shows a stereo headphone output amplifier for the ad1849 16-bit soundport ? stereo codec device. the pseudo- reference voltage is derived from the common-mode voltage generated internally by the ad1849, thus providing a convenient bias for the headphone output amplifiers. ad1849 lout1l cmout lout1r 1/2 op283 1/2 op283 1/2 op283 optional gain 1k v ref 10 f l volume control r volume control 5k +5v 16 220 f 47k headphone left headphone right v ref v ref 5k 10 f 10k 10k optional gain 1k 16 220 f 47k +5v figure 4. headphone output amplifier for multimedia sound codec soundport is a registered trademark of analog devices, inc. low noise microphone amplifier for multimedia the op183 family is ideally suited as a low noise microphone preamp for low voltage audio applications. figure 5 shows a gain of 100 stereo preamp for the ad1849 16-bit soundport stereo codec chip. the common-mode output buffer serves as a phantom power driver for the microphones. 1/2 op213 1/2 op283 1/2 op283 ad1849 left electret condenser mic input right electret condenser mic input 10 f 20 50 +5v 10k 100 minr cmout minl +5v 20 10 f 50 10k 100 10k 10k figure 5. low noise stereo microphone amplifier for multimedia sound codec a 3 v 50 hz/60 hz active notch filter with false ground to process ac signals, it may be easier to use a false-ground bias rather than the negative supply as a reference ground. this would reject the power-line frequency interference which can oftentimes obscure low frequency physiological signals, such as heart rates, blood pressures, eegs, and ecgs. a1 a2 a3 1/2 op283 1/2 op283 r2 r1 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 c1 c2 c3 c4 c5 c6 q = 0.75 note: for 50hz applications change r1-r4 to 3.1 and r5 to 1.58 (3.16 2). a1, a2, and a3 = 1/2 op283 v in v o 1 f (1 f 2) 1.33k (2.67k 2) 10k 0.75v 3v 3v 2.67k 1 f 1 f 2.67k 2.67k 2 f 10k 1k 1k 2.67k 1 f 75k 25k 0.015 f 70 figure 6. 3 v supply 50 hz/60 hz notch filter with pseudo ground figure 6 shows a 50 hz/60 hz active notch filter for eliminating line noise in patient monitoring equipment. it has several kilohertz bandwidth and is not sensitive to false-ground pertur- bations. the simple false-ground circuit shown achieves good rejection of low frequency interference using standard off-the- shelf components. amplifier a3 biases a1 and a2 to the middle of their input common-mode range. when operating on a 3 v supply, the center of the op283s common-mode range is 0.75 v. this notch filter effectively squelches 60 hz pickup at a filter q of 0.75. to reject 50 hz interference, change the resistors in the twin-t section (r1 through r5) from 2.67 k ? to 3.16 k ? . the filter section uses an op283 dual op amp in a twin-t configuration whose frequency selectivity is very sensitive to the relative matching of the capacitors and resistors in the twin-t section. mylar is the material of choice for the capacitors, and the relative matching of the capacitors and resistors determines the filters pass band symmetry. using 1% resistors and 5% capacitors produces satisfactory results. a low voltage frequency synthesizer for wireless transceiver the op183s low noise and the low voltage operation capability serves well for the loop filter of a frequency synthesizer. figure 7 shows a typical application in a radio transceiver. the phase noise performance of the synthesizer depends on low noise contribution from each component in the loop as the noise is amplified by the frequency division factor of the prescaler.
rev. c op183/op283 phase detector op183 reference oscillator prescaler v control vco rf out varacter diode 900mhz crystal 3v figure 7. a low voltage frequency synthesizer for a wireless transceiver q12 q11 qb11 r9 qd2 cc2 r8 qd3 co r7 q10 q8 q6 cc3 r5 qb14 rb6 qb8 cf1 qb13 qb12 q3 q4 q5 q7 qd1 qb7 rb5 rb4 qb6 r4lt r4at r11 q2 qb10 r2 r4b r4a z1 cc1 r3b r3at r3a q1 r1 r3lt r10 cb1 jb1 rb3 qb9 qb3 qb1 rb1 rb2 qb2 a b qb4 qb5a figure 8. op183 simplified schematic the resistors used in the low-pass filter should be of low to moderate values to reduce noise contribution due to the input bias current as well as the resistors themselves. the filter cutoff frequency should be chosen to optimize the loop constant. C11C
rev. c op183/op283 C12C * op283 spice macro-model rev. a, 9/93 * jcb/adi * * copyright 1993 by analog devices * * refer to readme.doc file for license statement. * use of this model indicates your acceptance of the terms and * provisions in the license statement. * * node assignments * noninverting input * | inverting input * | | positive supply * | | | negative supply * | | | | output * || | | | .subckt op283 2 1 99 50 45 * * input stage and pole at 600 khz * d1 9 10 dx d2 11 9 dx e1 10 98 poly(1) 99 98 -1.35 1.03 v2 50 11 C0.63 * * common mode stage with zero at 353 hz * ecm 14 98 poly(2) (1,98) (2,98) 0 3.5 3.5 r7 14 15 1e6 c4 14 15 3.75e-11 r8 15 98 1 * * pole at 20 mhz * gp2 98 31 (9,98) 1e-6 rp2 31 98 1e6 cp2 31 98 7.96e-15 * * zero at 1.5 mhz * ez1 32 98 (31,98) 1e6 rz1 32 33 1e6 rz2 33 98 1 cz1 32 33 106e-15 * * pole at 10 mhz * i1 99 8 1e-4 q1 416 qp q2 537 qp cin 1 2 1.5pf r1 50 4 1591 r2 50 5 1591 c1 4 5 83.4e-12 r3 6 8 1075 r4 7 8 1075 ios 1 2 12.5e-9 eos 3 2 poly(1) (15,98) 25e-6 1 dc1 2 36 dz dc2 1 36 dz * * gain stage and dominant pole at 10 hz * eref 98 0 poly(2) (99,0) (50,0) 0 0.5 0.5 g1 98 9 (4,5) 6.28e-4 r5 9 98 1.59e9 c2 9 98 10e-12 gp10 98 40 (33,98) 1e-6 rp10 40 98 1e6 cp10 40 98 15.9e-15 * * output stage * ro1 99 45 140 ro2 45 50 140 g7 45 99 (99,40) 7.14e-3 g8 50 45 (40,50) 7.14e-3 g9 98 60 (45,40) 7.14e-3 d7 60 61 dx d8 62 60 dx v7 61 98 dc 0 v8 98 62 dc 0 gsy 99 50 (99,50)5e-6 fsy 99 50 poly(2) v7 v8 1.075e-3 1 1 d9 40 41 dx d10 42 40 dx v5 41 45 1.2 v6 45 42 1.5 * * models used * .model dx d .model dz d(is=1e-15 bv=7.0) .model qp pnp(bf=143) .ends
rev. c outline dimensions dimensions shown in inches and (mm). 8-lead narrow-body so (so-8) 0.0098 (0.25) 0.0075 (0.19) 0.0500 (1.27) 0.0160 (0.41) 8 0 0.0196 (0.50) 0.0099 (0.25) 45 85 4 1 0.1968 (5.00) 0.1890 (4.80) 0.2440 (6.20) 0.2284 (5.80) pin 1 0.1574 (4.00) 0.1497 (3.80) 0.0500 (1.27) bsc 0.0688 (1.75) 0.0532 (1.35) seating plane 0.0098 (0.25) 0.0040 (0.10) 0.0192 (0.49) 0.0138 (0.35) C13C op183/op283
rev. c revision history location page data sheet changed from rev. b to rev. c. edits to features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 edits to general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 edits to specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C3 edits to package type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 edits to ordering guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 edits to absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 edits to outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 C14C
rev. c C15C
printed in u.s.a. c00292C0C2/02(c) C16C


▲Up To Search▲   

 
Price & Availability of OP183GBC

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X